
International Journal of Scientific & Engineering Research, Volume 7, Issue 7, July-2016 190
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

A Comparative case study to identify
Programming Bugs in ANSI-C based system using

Formal Software Verification
 Tanjia Akter (Author), University of Asia Pacific, Dhaka, Bangladesh, Email: a.tanjia@yahoo.com.

Abstract— Software is the most complex part of today's safety critical embedded systems. Most embedded systems are legacy designs those are

written in a low level language such as ANSI-C or even assembly language. Conventional testing methods often fail to detect hidden flaws in complex

embedded software such as device drivers or file systems. This deficiency incurs significant development and support/maintenance cost for the

manufacturers. Model checking techniques have been proposed to compensate for the weaknesses of conventional testing methods through exhaustive

analyses. It has become very demandable way to find those hidden bugs in program and correct the software. Whereas conventional model checkers

require manual effort to create an abstract target model, modern software model checkers remove this overhead by directly analyzing a target C

program, and can be utilized as unit testing tools. In my research, we present a comparative analysis and the applicability of model checking tools for

software in embedded systems.

Keywords— Bounded model checking (BMC), Model checking, Software verification, Predicate abstraction.

 -------------------------------<>---------------------------------

1. INTRODUCTION
MODEL checking[3] is an automatic technique for verifying
behavioral properties of a model of a system by exhaustively
enumerating its states. It has proven to be a successful
technology to verify real-time embedded and safety-critical[1]
systems.

Software errors can cause large amounts of damage,
not only in safety-critical systems, but also in industrial
applications. Software rapidly grows very complex and code
reuse introduces code with side-effects unknown to the
programmer. In concurrent software, the problems are
further intensified because the environment strongly
influences the order in which parts of the program are
executed, which introduces a source of variation that makes it
hard to find a failure. And moreover: it is even hard to
reproduce a failure once one is found. Therefore, it is
necessary to find automated methods to verify if software
fulfills its specification and, if not, to help the user by
reporting how the specification was violated. Model checking
method is such an automated method to detect the violation.

Currently there are 13 model checking tools with a
number of different capabilities suited to different kinds of
problems. These tools are BLAST, CBMC, BOOP, SLAM,
SATABS, ZING etc. that takes C/C++ as modeling language to

verify. In my research work I picked up three popular tools
from the existing model checker tool and with some model C
program will develop a behavioral comparison between them
like the functionalities and techniques used for model
checking and other.

To conduct my research I have chosen model checker

tool based on Boolean Satisfiability Problem (SAT) tool over
Satisfiability modulo theories (SMT). SMT based BMC for
software[7] [8] [9] only the theories of uninterrupted
functions, arrays and linear arithmetic were considered. The
tools that I have used in my research are CBMC, SATABS and
ZING. Without these there are other tools that I have tried
(such as BOOP, BLAST, MAGIC, etc) but due to some major
issues couldn’t successfully run those tools. One common
issue was target OS doesn’t match as my target OS is
Windows and there are several tool exists which have no
windows supported version. The target property that I have
exercised without target tools is user-specified assertions
properties because this is the common property which is
supported selected tools.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 7, July-2016 191
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

A. SECTION DETAILS

In section 1, we included the motivation of our thesis
work and introduced about model checking and C based
model checker tools.

In Section 2, we presented background study of such
model checking tools, those are able to verify ANSI C.

In section 3, we discussed about exercised model
checking tools such as CBMC which is capable of verifying
almost full ANSI. SATABS, which is a bit-precise software
model checker for ANSI-C programs and ZING, which is a
framework for software model-checking.

In section 4, we added the analyzed result such as
findings during experiment of CBMC, SATABS and ZING.
We have also added the sample codes runtime data analysis
based on different model checker tools that we have used in
our research.

Finally in section 5, the conclusion or author opinion
is added based on the experience gather from different model
checker tools during the research. Tools that are mainly
mentioned are CBMC, SATABS and ZING.

2. BACKGROUND STUDY
Here, the 13 existing model checkers for ANSI C

code are described. Following, we describe two different
approaches to model check ANSI C code. There are four
approaches to model check ANSI C code[5]. These are –

• Bounded model checking
• Predicate abstraction
• Translate into the model of a general-purpose model

checker
• Translate into machine code

These approaches reflect the most prominent
features of the respective C code model checker. Some of the
model checkers apply more than one of these approaches. All
these approaches have to deal with the potentially infinite
state space of a C program. A complete overview of C code
model checkers known to us is given in the following Table:

 Table 1: List of C source code model checkers

Model checker Institute Model Techniques used

BLAST UC
Berkeley

C

CIL, control flow
automation,
predicate
abstraction,
CEGAR, theorem
prover.

Model checker Institute Model Techniques used

BOOP IST Graz C

Boolean program,
predicate
abstraction,
CEGAR, theorem
prover, model
checking with
MOPED.

CBMC CMU C/C++
Bounded model
checking using SAT
solver

FEAVER Bell Labs C

Translation into
Promela, model
checking with
SPIN.

FOCUSCHECK
Lowa
State

University
C

CIL, translation into
pushdown system,
use of constraint
solver, model
checking of
pushdown system

F-SOFT NEC C

CIL, CFG, predicate
abstraction, SAT
solver, model
checking with
Verisol(Diver)

MAGIC CMU C

CIL, modular
verification, control
flow automation,
predicate
abstraction,
CEGAR, SAT
solver, model
checking with SMV.

MOPS
UC Davis,
UC
Berkeley

C

CFG, translation
into pushdown
automation, model
checking of
pushdown
automation.

SATABS CMU C/C++

Boolean program,
predicate
abstraction,
CEGAR, SAT
solver, model
checking with SMV.

SLAM Microsoft
Research

C

Boolean program,
predicate
abstraction,
CEGAR, theorem
prover, model

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 7, July-2016 192
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

Model checker Institute Model Techniques used
checking with
BEBOP.

STEAM University
Dortmund

C++

Translation into
machine code, state
pace generation
with Internet C++,
Virtual Machine.

ZING Microsoft
Research

C

Translation into
ZING, model
checking with
ZING model
checker.

REDLIB Microsoft
Research

C/C++

Library for the
model-checking of
communicating
timed automata’s
with BDD-like
diagrams, TCTL
model-checker with
timed fairness
quantifications, fair
simulation checker,
and interactive
symbolic simulator.

3 EXERCISED MODEL CHECKER TOOLS
From those 13 model checker tools we have worked with

three tools those are CBMC, SATABS, ZING. Details of these
three model checker tools have given below:

3.1 CBMC- C BOUNDED MODEL CHECKER

CBMC is one of such model checking tools, which is
capable of verifying almost full ANSI C. It was first
developed at CMU by Daniel Kroening and Ed Clarke[11]. It
is capable of verifying buffer overflows, pointer safety,
exceptions and user-specified assertions. CBMC implements
a technique called Bounded Model Checking (BMC), where it
convert the program and properties into Boolean formula and
SAT solver is used to show whether the formula is satisfiable
or not. So if any violated property exists then it will return a
counterexample with tracing information, which confirms
verification for the safety issues of embedded system.

 Figure 1: CBMC Program Transformation into a Mathematical Model

3.2 SATABS – PREDICATE ABSTRACTION

SATABS[14] is a bit-precise software model checker
for ANSI-C programs. It implements sound predicate-
abstraction based algorithms for both sequential and
concurrent software. It is a verifier for C programs that uses
counterexample-guided abstraction refinement based on
predicate abstraction as pioneered by SLAM. It uses predicate
abstraction technique to find the bug. Predicate abstraction is
a method of synthesizing the strongest inductive invariant of
a system expressible as a Boolean combination of a given set
of atomic predicates. It is a technique commonly used in
software model checking in which an infinite-state system is
represented abstractly by a finite-state system whose states
are the truth valuations of a chosen set of atomic predicates. It
has recent successes in software verification. Steps of this
technique have given below:
 Sample code Predicates

int main() P1 
i=1
{ p2 
i=2
int i;
p3  even(i)
i=0;
while(even(i))
Basic Block: i++
{
i++; < I’=i+1 > =
T
}
}

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 7, July-2016 193
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

Like both iterations, we can abstract the predicates of
a program. If all are True, then it will terminate again if False,
then it will generate spurious counterexample.

3.3 ZING – PREDICATE ABSTRACTION

Zing is a framework for software model-checking. It
supports key programming language constructs such as
objects, functions, threads, channels, dynamic allocation. It
enables easier extraction of models from code. It supports
conformance checking[17]. The Zing language is designed to
create executable models of concurrent software, which can
be analyzed by the Zing model checker. Properties to check
are expressed by assertions. The Zing model-checker is
capable of detecting a number of different errors in a Zing
model such like as stuck states, Assertion failures and
Execution failures. When the zing compiler translates a zing
model into a zing object model, then that can be executed to
produce transitions between zing states like stacks, global
storage and heap. Moreover, the zing state explorer executes
the zing object model to explore the state space of the
corresponding zing model. The model verification technique
is given below:

4 EXPERIMENTS AND RESULTS
 During experiment we got some findings about the

model checker tools and comparative results using Binary
search and Bubble sort programs. This are-

4.1 FINDINGS OF CBMC:

a. It is capable of processing almost full ANSI
C.

b. CBMC allow setting the entry point.
c. Provides error tracing information
d. Allow unwind a loop for user desired times
e. Allow to check particular module from a

source file
f. Along with other property checking (e.g.

Array bounds, pointer safety, exceptions) it
also allows assertion checking to which is
mostly used in embedded system to trace
the error.

g. CMBC can only be used to find errors and
not to prove the correctness.

4.2 FINDINGS OF SATABS:

a. It is capable of processing almost full ANSI
C.

b. SATABS allows to set the model checker
name.

c. It sets maximum number of refinement
iterations.

d. SATABS allow to set the entry point.
e. Provides error tracing information.
f. It uses heuristic to detect loops.
g. Doesn’t allow unwind a loop.
h. Along with other property checking (e.g.

Array bounds, pointer safety, exceptions) it
also allows assertion checking to which is
mostly used in embedded system to trace
the error.

4.3 FINDINGS OF ZING:

a. It is capable of processing object models.
b. ZING allows assertion checking, so all

properties to check are expressed by
assertions.

c. Check for errors in sets of web services.
d. Check web services for conformance with

behavioral contracts.
e. Check behavior of Windows device drivers

under concurrent execution.
f. Find errors in complex application

protocols.
g. Can query how many processes are in the

state.
h. Can “execute” a particular process in the

state for one atomic step and return the
resulting state.

i. Can compare if two states are equal.

Figure-1: Verifying Model Using Zing

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 7, July-2016 194
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

j. Explore the state space of the extracted
model.

5. COMPARATIVE RESULTS
In Binary search I have introduced the following

assert condition for an array length 8 and the experiment is
done for array length 8, 16, 32, 64, and 128.

assert((result!=-1&&array[result]== search_item)||(result==-
1 && (array[0]!= search_item && array[1]!= search_item
&&array[2]!= search_item && array[3]!= search_item &&
array[4]!= search_item && array[5]!= search_item &&
array[6]!= search_item && array[7]!= search_item)));

And the experimented data based on different model
checker tool is presented in table 1 has given below.

Table 1: Comparison table for Binary search

CBMC
Array Length 8 16 32 64 128

Runtime 0.232s 0.599s 2.533s 18.163s 490.946s

SATABS
Array Length 8 16 32 64 128

Runtime 0.075s 0.154s 0.217s 0.44s 1.143s

ZING
Array Length 8 16 32 64 128

Runtime 0.9994s 7.5753s 10.3629s 11.6272s 12.6575s

0
200
400
600

8 16 32 64 128

Ru
nt

im
e

Array Length

CBMC

SATABS

ZING

 Graph - 1

Same way In Bubble sort code we have introduced
the following assert condition for an array length 8 and the
experiment is also done for array length 8, 16, 32, 64, and 128.

assert(array[0]<=array[1]&&array[1]<=array[2]&&array[2]<=a
rray[3]&&array[3]<=array[4]&&array[4]<=array[5]&&array[5
]<=array[6]);

 And the experimental result based on different model
checker tool is presented in table 2.

 Table 2: Comparison table for Bubble Sort

CBMC Array Length 8 16 32 64 128
Runtime 0.011s 0.055s 0.491s 6.811s 380.595s

SATABS Array Length 8 16 32 64 128
Runtime 0.052s 0.085s 0.206s 0.406s UNABLE

ZING

Array Length 8 16 32 64 128
Runtime 6.0238s 8.3329s 9.6148s 10.6377s 11.1105s

0
100
200
300
400

8 16 32 64 128

Ru
nt

im
e

Array Length

CBMC

SATABS

ZING

 Graph - 2

For both cases SATABS is taking less time where
ZING is taking much more time compare with 2 other tools.
Compare with others SATABS is much faster, the reason
could be in SATABS it drops the unused function before
verification procedure, which make the verification
procedure run time efficient. However in bubble sort
SATABS was UNABLE framework was not able to do the
verification for an instance of array of length 32 128, here
UNABLE means that the framework is unable to validate the
program (either because a lack of expression power or time
overflow). So in terms of decision procedural time and length
of array CBMC indicates the best fitted framework for
verification.

6. CONCLUSION
In this research different model checkers are

discussed and experimented result is shown for sample C
code. For this experiment I avoided embedded C code
because none of them is currently able to model check C code
for embedded systems. Most of them deal with the
verification of drivers or protocols written in ANSI C code
and are not intended to model check software for embedded
systems.

I have described CBMC, SATABS and ZING in this
paper. In my research, I tried to use some other tools. But
because of some inconvenience like supporting platform,
properties etc. I could not go forward with those tools.

I gathered some experimental results with the
program that I used in the case study. According to the result
and in terms of decision procedural time and length of array
CBMC indicates the best fitted framework for verification.

ACKNOWLEDGMENT

 At first the greatest thanks goes to my honorific
supervisor, Nahida Sultana Chowdhury, who led me into

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 7, July-2016 195
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

the interesting areas of Formal software verification methods.
I sincerely appreciate her infinite patience and foresighted
suggestions that guided me through the difficulties.
Additionally, I would like to thank Daniel Kroening, the
developer of CBMC Model Checker, who answered my
questions and gave me encouragement by google group
conversation in the problems of my thesis. And I would also
like to thank my thesis reviewer, who approved this thesis
report.

REFERENCES
[1] Edmund Clarke, Daniel Kroening, and Flavio Lerda: A Tool for

Checking ANSI-C Programs. Carnegie Mellon University.

[2] Rohrbach,M.: An approach for model checking embedded systems
software. Diploma thesis, RWTH Aachen University (2006).

[3] A. Armando, J. Mantovani, and L. Platania, “Bounded model
checking of software using SMT solvers instead of SAT solvers”, pp.
146–162, in SPIN, 2006.

[4] M. K. Ganai and A. Gupta, “Accelerating high-level bounded
model checking”, pp. 794–801, in ICCAD, 2006.

[5] A. Armando, J. Mantovani, and L. Platania, “Bounded model
checking of software using SMT solvers instead of SAT solvers,” Int.
J. Softw. Tools Technol. Transf., pp. 69–83, 2009.

[6] Schlich, B., Kowalewski, S.: Model checking C source code for
embedded systems. In: Margaria, T., Steffen, B., Hinchey, M.G.
(eds.) Proceedings of the IEEE/NASA Workshop Leveraging.
Applications of Formal Methods, Verification, and Validation
(IEEE/NASA ISoLA 2005), NASA/CP-2005-212788, pp. 65–77.
NASA, Maryland, USA (2005).

[7] Edmund Clarke, Daniel Kroening: ANSI-C Bounded Model
Checker. School of Computer Science Carnegie Mellon University,
Pittsburgh, PA 15213, August 13, 2003.

[8] G´erard Basler, Alastair Donaldson1, Alexander Kaiser2, Daniel
Kroening2, Michael Tautschnig2, and Thomas Wahl3: SATABS:
A Bit-Precise Verifier for C Programs. Imperial College, London,
United Kingdom2 University of Oxford, United Kingdom3,
Northeastern University, Boston, United States.

[9] Tony Andrews, Shaz Qadeer, Sriram K. Rajamani , Jakob Rehof
:Zing: A Systematic State Explorer for Concurrent Software.
Microsoft Research.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 7, July-2016 196
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

IJSER

http://www.ijser.org/

	1. Introduction
	A. SECTION DETAILS

	2. Background Study
	3 Exercised model checker tools
	3.2 SATABS – Predicate Abstraction
	3.3 ZING – Predicate Abstraction
	4 Experiments and results
	4.1 Findings of CBMC:
	4.2 Findings of SATABS:
	4.3 Findings of ZING:

	5. Comparative results
	6. Conclusion
	Acknowledgment

